[an error occurred while processing this directive]
首 页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 留言板 | 联系我们 | English
中国沙漠 2016, Vol. 36 Issue (1) :85-92    DOI: 10.7522/j.issn.1000-694X.2016.00001
“沙漠化土地恢复与持续利用国际研讨会”暨中国科学院奈曼沙漠化研究站30周年站庆会议论文选 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
毕京东1,2, 李玉霖1, 宁志英1,2, 赵学勇1
1. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049
Carbon Mineralization and Decomposition of Litters from Dominant Plants in the Horqin Sandy Land: Effects of Litter Quality
Bi Jingdong1,2, Li Yulin1, Ning Zhiying1,2, Zhao Xueyong1
1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF (2171KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 凋落物矿化分解是维持生态系统养分循环的关键过程,也是陆地生态系统C向大气释放的主要动力,因此影响和控制生态系统凋落物矿化分解的主要因素一直备受关注。土地沙漠化是科尔沁沙地最严重的环境问题,并且导致土壤粗质化和贫瘠化,凋落物输入和矿化分解对于改善该地区土壤质地和养分状况至关重要。通过室内培养的方法,对科尔沁沙质草地27种主要植物叶凋落物矿化分解及其与凋落物C含量、N含量、木质素含量、C/N、木质素/N、极易分解有机物含量(LOMⅠ)、中易分解有机物含量(LOMⅡ)及难分解有机物含量(RP)等指标关系进行研究。结果表明:科尔沁沙地27种植物叶凋落物质量存在较大差异(P<0.001),相应的27种植物叶凋落物培养样品矿化有机碳总量和干物质损失量存在显著差异(P<0.001),分别在9.0 mg C·g-1干土至12.7 mg C·g-1干土和14.7%至40.4%之间变化。添加凋落物后培养样品的CO2释放总量显著大于对照(不添加凋落物),说明土壤中添加凋落物后,培养样品的有机碳矿化速率明显增大。27种植物叶凋落物矿化有机碳总量以及损失干物质总量与凋落物的N含量、C/N、木质素/N、LOMⅠ、LOMⅡ和RP等指标存在显著的相关性,叶凋落物的矿化分解主要受LOMⅠ和木质素/N的影响。
Email Alert
关键词碳矿化   凋落物分解   凋落物质量   干物质损失   科尔沁沙地     
Abstract: Carbon(C) mineralization and decomposition of litters is a critical process to maintain ecosystem nutrients cycling, and drives the large flux of terrestrial C to atmosphere. Therefore, the factors that control the litter decomposition in terrestrial ecosystem are focused on all the time. Horqin Sandy Land is one of the regions that suffering severe land desertification in north China. As a result, soils in this region were coarsened and impoverished. Litter input and subsequent C mineralizing and decomposing would improve soil texture and nutrients in this region. In this study, C mineralization and decomposition of litters from 27 plant species were investigated by adding litter into soil and incubating it in laboratory. Subsequently, we analyzed the correlations of total CO2 release and dry mass loss with C concentration, N concentration, lignin concentration, C/N, lignin/N, labile Pool I and II, and recalcitrant Pool in litter. The results showed that there were big differences in litter quality among 27 plant species, and correspondingly total CO2 release and dry mass loss also differed greatly and varied from 9.0 mg C·g-1 dry soil to 12.7 mg C·g-1 dry soil and from 14.7% to 40.4%, respectively, among 27 plant species. Total CO2 releases after adding litter were significantly larger than the control (non-addition of litter), suggesting that litter input would accelerated C mineralization. Correlation analysis showed that total CO2 release and dry mass loss were significantly correlated with N concentration, C/N, lignin/N, labile pool I and II, and recalcitrant pool in litter of 27 plant species. Stepwise regression, however, suggested that C mineralization and mass loss of litter were mainly controlled by labile pool I and lignin/N in 27 plant species.
KeywordsC mineralization,   litter decomposition,   litter quality,   dry mass loss,   Horqin Sandy Land     
收稿日期: 2015-11-30;
通讯作者 李玉霖(E-mail:lily@lzb.ac.cn)     Email: lily@lzb.ac.cn
作者简介: 毕京东(1989-),男,山东菏泽人,硕士研究生,主要从事沙地生态系统碳氮循环研究。E-mail:biwenlu5@163.com
毕京东, 李玉霖, 宁志英等 .科尔沁沙地优势植物叶凋落物分解及碳矿化——凋落物质量的影响[J]  中国沙漠, 2016,V36(1): 85-92
Bi Jingdong, Li Yulin, Ning Zhiying etc .Carbon Mineralization and Decomposition of Litters from Dominant Plants in the Horqin Sandy Land: Effects of Litter Quality[J]  JOURNAL OF DESERT RESEARCH, 2016,V36(1): 85-92
链接本文:     或
[1]Aerts R,van Bodegom P M,Cornelissen J H C.Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition[J].New Phytologist,2012,196(1):181-188.
[2]Meier C L,Bowman W D.Links between plant litter chemistry,species diversity,and below-ground ecosystem function[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(50):19780-19785.
[3]Tan Y L,Chen J,Yan L M,et al.Mass loss and nutrient dynamics during litter decomposition under three mixing treatments in a typical steppe in Inner Mongolia[J].Plant and Soil,2013,366(1/2):107-118.
[5]Melillo J M,Aber J D,Muratore J F.Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J].Ecology,1982,63(3):621-626.
[6]Wickings K,Grandy A S,Reed S C,et al.The origin of litter chemical complexity during decomposition[J].Ecology Letters,2012,15(10):1180-1188.
[7]Cleveland C C,Reed S C,Keller A B,et al.Litter quality versus soil microbial community controls over decomposition:a quantitative analysis[J].Oecologia,2014,174(1):283-294.
[8]Dirks I,Navon Y,Kanas D,et al.Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons[J].Global Change Biology,2010,16(10):2799-2812.
[9]Austin A T,Vitousek P M.Precipitation,decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai'i[J].Journal of Ecology,2000,88(1):129-138.
[10]Zhou R L,Li Y Q,Zhao H L,et al.Desertification effects on C and N content of sandy soils under grassland in Horqin,northern China[J].Geoderma,2008,145(3/4):370-375.
[11]Zhao H L,Yi X Y,Zhou R L,et al.Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland,Inner Mongolia[J].CATENA,2006,65(1):71-79.
[12]Li L J,Zeng D H,Yu Z Y,et al.Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China[J].Journal of Arid Environments,2011,75(9):787-792.
[13]Lin G G,Mao R,Zhao L,et al.Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability[J].Plant and Soil,2013,373(1/2):649-657.
[15]Rovira P,Vallejo V R.Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil:an acid hydrolysis approach[J].Geoderma,2002,107(1/2):109-141.
[16]Prescott C E.Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils?[J].Biogeochemistry,2010,101(1/3):133-149.
[17]Hossain M Z,Sugiyama S.Influences of plant litter diversity on decomposition,nutrient mineralization and soil microbial community structure[J].Grassland Science,2011,57(2):72-80.
[18]Reynolds B C,Hunter M D.Responses of soil respiration,soil nutrients,and litter decomposition to inputs from canopy herbivores[J].Soil Biology & Biochemistry,2001,33(12/13):1641-1652.
[20]Klotzbücher T,Kaiser K,Stepper C,et al.Long-term litter input manipulation effects on production and properties of dissolved organic matter in the forest floor of a Norway spruce stand[J].Plant and Soil,2012,355(1/2):407-416.
[22]Hobbie S E.Nitrogen effects on decomposition:a five-year experiment in eight temperate sites[J].Ecology,2008,89(9):2633-2644.
[23]Zhao H M,Huang G,Ma J,et al.Decomposition of aboveground and root litter for three desert herbs:mass loss and dynamics of mineral nutrients[J].Biology and Fertility of Soils,2014,50(5):745-753.
[24]Solly E F,Schoning I,Boch B,et al.Factors controlling decomposition rates of fine root litter in temperate forests and grasslands[J].Plant and Soil,2014,382(1/2):203-218.
[25]胡亚林,汪思龙,黄宇,等.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J].生态学报,2005 (10):2662-2668.
[27]Austin A T,Ballare C L.Dual role of lignin in plant litter decomposition in terrestrial ecosystems[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(10):4618-4622.
[1] 姚姣转, 刘廷玺, 童新, 王天帅, 王海燕.科尔沁沙地沙丘-草甸相间地土壤颗粒的分形特征[J]. 中国沙漠, 2016,36(2): 433-440
[2] 马赟花, 张铜会, 刘新平, 毛伟, 岳祥飞.极端降水事件对科尔沁沙地一年生植被的影响[J]. 中国沙漠, 2016,36(1): 50-56
[3] 罗永清, 赵学勇, 丁杰萍, 冯静, 苏娜, 周欣, 岳祥飞.科尔沁沙地不同类型沙地植被恢复过程中地上生物量与凋落物量变化[J]. 中国沙漠, 2016,36(1): 78-84
[4] 周欣, 左小安, 赵学勇, 刘川, 吕朋.科尔沁沙地植物功能性状的尺度变异及关联[J]. 中国沙漠, 2016,36(1): 20-26
[5] 王新源, 赵学勇, 李玉霖, 陈翔舜, 王小军, 云建英.科尔沁沙地沙丘生境单元凋落物运移特征[J]. 中国沙漠, 2016,36(1): 167-173
[6] 吕朋, 左小安, 张婧, 周欣, 连杰, 刘良旭.放牧强度对科尔沁沙地沙质草地植被的影响[J]. 中国沙漠, 2016,36(1): 34-39
[7] 岳祥飞, 张铜会, 赵学勇, 李玉霖, 刘新平, 王少昆.科尔沁沙地降雨特征分析——以奈曼旗为例[J]. 中国沙漠, 2016,36(1): 118-123
[8] 黄海涛, 常学礼, 岳喜元, 吕德燕.科尔沁沙地不同沙地景观区植被指数对水热因素响应[J]. 中国沙漠, 2016,36(1): 40-49
[9] 包哈森高娃, 阿拉坦花, 丰洁, 芒来, 刘德森, 姜鹏.科尔沁沙地不同林龄小叶锦鸡儿(Caragana microphylla)人工林群落特征及平茬抚育后状况[J]. 中国沙漠, 2015,35(6): 1527-1531
[10] 杨淑琴, 周瑞莲, 梁慧敏, 赵哈林, 赵学勇.沙漠植物抗氧化酶活性及渗透调节物质含量与光合作用的关系[J]. 中国沙漠, 2015,35(6): 1557-1564
[11] 王永福, 赵学勇, 王少昆, 包哈森高娃.科尔沁沙地两种固沙灌木林地土壤理化性质和酶活性比较[J]. 中国沙漠, 2015,35(4): 937-941
[12] 贾恪, 刘廷玺, 雷慧闽, 段利民, 罗艳云, 张圣微, 童新, 孙丽.科尔沁沙地沙丘-草甸相间地区1986-2013年湖泊演变[J]. 中国沙漠, 2015,35(3): 783-791
[13] 罗永清, 赵学勇, 周欣, 朱阳春, 岳祥飞, 张腊梅.不同生境中差不嘎蒿(Artemisia halodendron)生长特征及地下生物量分布[J]. 中国沙漠, 2015,35(1): 152-159
[14] 周欣, 左小安, 赵学勇, 刘川, 罗永清, 岳祥飞, 吕朋.科尔沁沙地沙丘固定过程中植物生物量及土壤特性[J]. 中国沙漠, 2015,35(1): 81-89
[15] 岳喜元, 常学礼, 刘良旭, 黄海涛.科尔沁沙地几种固沙植物光谱-生物量模型构建与分析[J]. 中国沙漠, 2014,34(6): 1496-1502
Copyright 2010 by 中国沙漠